Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	000000		

Bubble Necessity Theorem

Tomohiro Hirano¹ Alexis Akira Toda²

¹Royal Holloway, University of London

²University of California San Diego

Seminar @Georgetown February 28, 2024

うしゃ ふゆ ア・イロット 山口 うくつ

1/36

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Rational asset price bubbles

- Bubble: asset price (P) > fundamental value (V)
 - V = present value of dividends (D)

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Rational asset price bubbles

- Bubble: asset price (P) > fundamental value (V)
 - V = present value of dividends (D)
- Bubbles are often considered special or fragile:

Our main results are concerned with nonexistence of asset pricing bubbles in those economies. These results imply that the conditions under which bubbles are possible—including some well-known examples of monetary equilibria—are relatively fragile.

—abstract of Santos and Woodford (1997)

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Pure bubble models

- It is well known that bubbles are possible
 - Samuelson (1958): bubbles in OLG model
 - Bewley (1980): bubbles in infinite-horizon model

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ���

4/36

- See Hirano and Toda (2024) for recent review
- Existing literature focuses on pure bubbles
 - asset pays no dividends (D = 0)
 - hence intrinsically worthless (V = 0)

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Possibility versus necessity of bubbles

- In pure bubble models, V = 0 is always equilibrium (fundamental equilibrium)
- In many models, there also exist continuum of bubbly equilibria
- Hence bubbles are possible but not necessary (inevitable)

イロト (母) (ヨ) (ヨ) (ヨ) (の)

5/36

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Contribution

- We prove Bubble Necessity Theorem in plausible general class of economic models
 - plain vanilla general equilibrium model
 - there exist equilibria
 - in all equilibria, P > V
- Bubble necessity condition: $R < G_d < G$, where
 - G: economic growth rate
 - G_d: dividend growth rate
 - R: (counterfactual) autarky interest rate
- Modern macro-finance theory seems to presuppose P = V; we challenge this view and claim P > V is norm under unbalanced growth

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Related literature

- Sufficient condition for bubbles Okuno and Zilcha (1983), Aiyagari and Peled (1991): if autarky inefficient, then ∃ bubbly equilibrium
- Necessary condition for bubbles Kocherlakota (1992), Santos and Woodford (1997): if \exists bubble, then PV of aggregate endowment = ∞
- Nonexistence of fundamental equilibria Wilson (1981)
 - Our marginal contribution: making it a general and formal theorem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ���

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	●00	00000	000 00 000000	000	

Definition of bubbles

- Asset dividend $D_t \geq 0$, price $P_t \geq 0$ at $t=0,1,\ldots$
- With Arrow-Debreu (date-0) price $q_t > 0$, no-arbitrage implies

$$q_tP_t=q_{t+1}(P_{t+1}+D_{t+1}),$$
 so
 $P_0=\sum_{t=1}^T q_tD_t+q_TP_T$ by iteration

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

8/36

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	● 00	00000	000	000	
			000000		

Definition of bubbles

- Asset dividend $D_t \geq 0$, price $P_t \geq 0$ at $t = 0, 1, \dots$
- With Arrow-Debreu (date-0) price $q_t > 0$, no-arbitrage implies

$$q_t P_t = q_{t+1}(P_{t+1} + D_{t+1}),$$
 so
 $P_0 = \sum_{t=1}^T q_t D_t + q_T P_T$ by iteration

• Letting $T \to \infty$, get

$$P_{0} = \sum_{\substack{t=1\\ \text{fundamental value}}}^{\infty} q_{t} D_{t} + \lim_{\substack{T \to \infty\\ \text{bubble component}}} q_{T} P_{T}$$

• If $\lim_{T\to\infty} q_T P_T = 0$, transversality condition holds and no bubble; if > 0, bubble

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000 00 000000	000	

Bubble Characterization Lemma (Montrucchio, 2004)

Lemma

If $P_t > 0$ for all t, asset price exhibits bubble if and only if

$$\sum_{t=1}^{\infty} \frac{D_t}{P_t} < \infty$$

イロト (得) (ヨト (ヨト ヨヨ の)

10/36

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000 00 000000	000	

Bubble Characterization Lemma (Montrucchio, 2004)

Lemma

If $P_t > 0$ for all t, asset price exhibits bubble if and only if

$$\sum_{t=1}^{\infty} \frac{D_t}{P_t} < \infty$$

- Hence bubble if and only if sum of dividend yields finite
- Since $\sum_{t=1}^{\infty} 1/t = \infty$ but $\sum_{t=1}^{\infty} 1/t^{\alpha} < \infty$ for $\alpha > 1$, \exists bubble if price-dividend ratio P_t/D_t grows faster than linearly

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Proof

• From no-arbitrage condition $q_{t-1}P_{t-1} = q_t(P_t + D_t)$, get

$$\frac{q_{t-1}P_{t-1}}{q_tP_t} = 1 + \frac{D_t}{P_t}$$

• Taking product from t = 1 to t = T, get

$$\frac{q_0 P_0}{q_T P_T} = \prod_{t=1}^T \left(1 + \frac{D_t}{P_t} \right)$$

• Expanding terms and using $1 + x \leq e^x$, get

$$1 + \sum_{t=1}^{T} \frac{D_t}{P_t} \le \frac{q_0 P_0}{q_T P_T} \le \exp\left(\sum_{t=1}^{T} \frac{D_t}{P_t}\right)$$

• Let $T \to \infty$ and use definition of TVC

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	0000 000	000 00 000000	000	

Two-sector growth economy with land

- Two-period OLG model, utility $(1 \beta) \log y + \beta \log z$
- Two sectors with production functions

$$F_{1t}(H,X) = G_1^t H,$$

$$F_{2t}(H,X) = G_2^t H^{\alpha} X^{1-\alpha},$$

where H: labor/human capital, X: land

- Sector 1 labor-intensive (service, finance, information, etc.)
- Sector 2 land-intensive (agriculture, construction, etc.)
- Assume $G_1 > G_2$, so productivity growth higher in Sector 1

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Equilibrium

• Equilibrium is sequence

$$\{(P_t, r_t, w_t, x_t, y_t, z_t, H_{1t}, H_{2t})\}_{t=0}^{\infty},$$

where P_t : land price, r_t : land rent, w_t : wage, x_t : land holdings, (y_t, z_t) : young and old consumption, (H_{1t}, H_{2t}) : labor input

- Utility/profit maximization, market clearing (good, land, labor)
- Profit maximization:

$$\alpha G_2^t H_{2t}^{\alpha-1} = w_t = G_1^t \iff H_{2t} = \alpha^{\frac{1}{1-\alpha}} (G_2/G_1)^{\frac{t}{1-\alpha}}$$

• Rent: X = 1 implies

$$r_t = (1 - \alpha)G_2^t H_{2t}^{\alpha} = (1 - \alpha)\alpha^{\frac{\alpha}{1 - \alpha}}G_2^t (G_2/G_1)^{\frac{\alpha t}{1 - \alpha}}$$

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000 00 000000	000	

Necessity of land bubble

- Young consumption $y_t = (1 \beta)w_t = (1 \beta)G_1^t$
- In equilibrium, young must buy land: $x_t = 1$
- Hence land price

$$P_t = P_t x_t = w_t - y_t = \beta G_1^t$$

Dividend yield

$$\frac{r_t}{P_t} = \frac{(1-\alpha)\alpha^{\frac{\alpha}{1-\alpha}}G_2^t(G_2/G_1)^{\frac{\alpha t}{1-\alpha}}}{\beta G_1^t} = \frac{(1-\alpha)\alpha^{\frac{\alpha}{1-\alpha}}}{\beta}(G_2/G_1)^{\frac{t}{1-\alpha}},$$

summable because $G_1 > G_2$, so by Bubble Characterization Lemma \bigcirc , land bubble is inevitable

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
			000000		

GDP share of agriculture decreases with income

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	0000	000	000	
			000000		

Employment share of agriculture decreases over time

FIGURE 20.1 The share of U.S. employment in agriculture, manufacturing, and services, 1800–2000.

Figure Acemoglu (2009, Figure 20-1), (=) (=) ()

17/36

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		•00	000000		

Innovation and stock market bubble

- Two-period OLG model, utility $(1 \beta) \log y + \beta \log z$
- Neoclassical aggregate production function F(K, L), where K: capital, L: labor

< ロ > < 同 > < E > < E > 三目 の

18/36

• Capital K_t and labor L_t exogenous (inessential)

• Rent:
$$r_t = F_K(K_t, L_t)$$

• Wage: $w_t = F_L(K_t, L_t)$

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000		
		000	00		
			000000		

Dividend yield

• As before, price of stock (claim to rent) is

$$P_t = \beta w_t L_t = \beta F_L(K_t, L_t) L_t$$

• Dividend equals aggregate rents:

$$D_t = r_t K_t = F_K(K_t, L_t)K_t$$

· Hence dividend yield is

$$\frac{D_t}{P_t} = \frac{1}{\beta} \frac{F_K(K_t, L_t)K_t}{F_L(K_t, L_t)L_t}$$

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	000000		

Necessity of stock market bubble

- Suppose K_t, L_t grow at rates G_K, G_L
- Suppose F exhibits constant elasticity of substitution (CES), so

$$F(K,L) = \left(\alpha K^{1-1/\sigma} + (1-\alpha)L^{1-1/\sigma}\right)^{\frac{1}{1-1/\sigma}}$$

Then dividend yield is

$$\frac{D_t}{P_t} = \frac{\alpha}{\beta(1-\alpha)} \left((G_K/G_L)^t (K_0/L_0) \right)^{1-1/\sigma}$$

• Hence if $G_K > G_L$ (so technological progress faster than labor productivity growth) and $\sigma < 1$ (consistent with empirical evidence), then D_t/P_t summable and stock market bubble

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	● O O	000	
		000	00		
			000000		

Model

- Two period OLG model
- Utility of generation t is $U_t(y_t, z_{t+1})$
- Time t endowments of young and old are (a_t, b_t)
- Long-lived asset pays dividend $D_t \ge 0$
- Budget constraints are

Young: $y_t + P_t x_t = a_t$, Old: $z_{t+1} = b_{t+1} + (P_{t+1} + D_{t+1})x_t$,

where P_t : asset price, x_t : asset holdings of young

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Equilibrium

• Equilibrium notion is competitive equilibrium with sequential trading

Definition

A competitive equilibrium consists of a sequence of prices $\{P_t\}_{t=0}^{\infty}$ and allocations $\{(x_t, y_t, z_t)\}_{t=0}^{\infty}$ satisfying the following conditions:

- 1. (Individual optimization) The initial old consume $z_0 = b_0 + P_0 + D_0$; for all t, the young maximize utility $U_t(y_t, z_{t+1})$ subject to the budget constraints
- 2. (Commodity market clearing) $y_t + z_t = a_t + b_t + D_t$ for all t
- 3. (Asset market clearing) $x_t = 1$ for all t

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	00 00 000000	000	

Bubbly and asymptotically bubbly equilibria Definition

An equilibrium is fundamental (bubbly) if $P_0 = V_0$ ($P_0 > V_0$).

• Definition of bubbly equilibria obvious

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000 00 000000	000	

Bubbly and asymptotically bubbly equilibria

Definition

An equilibrium is fundamental (bubbly) if $P_0 = V_0$ ($P_0 > V_0$).

- Definition of bubbly equilibria obvious
- However, want to rule out bubbly equilibria that are asymptotically bubbleless

Definition (Asymptotically bubbly equilibria)

Let $\{P_t\}_{t=0}^{\infty}$ be equilibrium asset prices. The asset is asymptotically relevant (irrelevant) if

$$\liminf_{t\to\infty}\frac{P_t}{a_t}>0\quad (=0).$$

A bubbly equilibrium is *asymptotically bubbly (bubbleless)* if the asset is asymptotically relevant (irrelevant).

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	•0		
			000000		

Assumptions

Assumption (A1)

For all t, the utility function $U_t : \mathbb{R}^2_+ \to [-\infty, \infty)$ is continuous, quasi-concave, and continuously differentiable on \mathbb{R}^2_{++} with positive partial derivatives.

- Standard assumption
- Convenient to define marginal rate of substitution

$$M_t(y,z) := \frac{(U_t)_z(y,z)}{(U_t)_y(y,z)} > 0$$

25/36

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	0.		
			000000		

Existence of equilibrium

Theorem (Existence)

If A1 holds, an equilibrium exists. The asset prices satisfy $0 \leq P_t \leq a_t$ and

$$P_t = \min \{M_t(y_t, z_{t+1})(P_{t+1} + D_{t+1}), a_t\},\$$

where $(y_t, z_{t+1}) = (a_t - P_t, b_{t+1} + P_{t+1} + D_{t+1}).$

- Note that budget constraint y_t + P_tx_t = a_t and market clearing x_t = 1 forces y_t = a_t P_t
- Proof is by truncation & Tychonoff's theorem

< ロ > < 同 > < E > < E > 三目 の

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			00000		

Assumptions

• We now aim to prove necessity of bubbles under additional assumptions

Assumption (A2) The endowments $\{(a_t, b_t)\}_{t=0}^{\infty}$ satisfy

$$\lim_{t\to\infty}\frac{a_{t+1}}{a_t} \eqqcolon G \in (0,\infty),$$
$$\lim_{t\to\infty}\frac{b_t}{a_t} \eqqcolon w \in [0,\infty).$$

Asymptotically constant income growth and ratio

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			00000		

Assumptions

• Define scaled forward rate function $f_t : \mathbb{R}_{++} \times \mathbb{R}_+ \to \mathbb{R}_+$ by

$$f_t(y,z) \coloneqq \frac{1}{M_t(a_ty,a_tz)} = \frac{(U_t)_y(a_ty,a_tz)}{(U_t)_z(a_ty,a_tz)}$$

• We impose following uniform convergence condition on f_t

Assumption (A3)

There exists a continuous function $f : \mathbb{R}_{++} \times \mathbb{R}_{+} \to \mathbb{R}_{+}$ such that $f_t \to f$ uniformly on compact sets, that is, for any nonempty compact set $K \subset \mathbb{R}_{++} \times \mathbb{R}_{+}$, we have

$$\lim_{t\to\infty}\sup_{(y,z)\in K}|f_t(y,z)-f(y,z)|=0.$$

< ロ > < 同 > < E > < E > 三目 の

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

CRRA example

• Suppose U exhibits constant relative risk aversion (CRRA), so $U_t(y,z) = u(y) + \beta u(z)$ with

$$u(c) = egin{cases} rac{c^{1-\gamma}}{1-\gamma} & ext{if } 0 < \gamma
eq 1, \ \log c & ext{if } \gamma = 1 \end{cases}$$

- Here $\beta > 0$ is discount factor and $\gamma > 0$ is relative risk aversion coefficient
- Then

$$f_t(y,z) = f(y,z) = \frac{1}{\beta}(z/y)^{\gamma},$$

so A3 obviously holds

イロト (母) (ヨ) (ヨ) (ヨ) (の)

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Bubble Necessity Theorem

Theorem (Bubble Necessity Theorem) *If A1–A3 hold and*

$$f(1, Gw) < G_d := \limsup_{t \to \infty} D_t^{1/t} < G,$$

30/36

then all equilibria are asymptotically bubbly.

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Bubble Necessity Theorem

Theorem (Bubble Necessity Theorem) *If A1–A3 hold and*

$$f(1, Gw) < G_d := \limsup_{t \to \infty} D_t^{1/t} < G,$$

< 日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 1 = <

31/36

then all equilibria are asymptotically bubbly.

• This is the bubble necessity condition $R < G_d < G$

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Intuition

- If fundamental (or asymptotically bubbleless) equilibrium exists, because $G_d < G$, asset becomes asymptotically irrelevant $(P_t \sim G_d^t \ll G^t)$
- Then equilibrium autarky in long run, and interest rate converges to

$$R_t = \frac{1}{M_t(y_t, z_{t+1})} \rightarrow f(1, Gw) < G_d$$

- But then fundamental value of asset infinite, so $P_t \ge V_t = \infty$, contradiction
- · Hence all equilibria must be asymptotically bubbly

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			00000		

Proof

- Proof is technical and highly nontrivial (as we want to prove that *all* equilibria are asymptotically bubbly)
- Here we mention steps
 - 1. Let $d_t = D_t/a_t$; show d_t is summable and hence $d_t \to 0$
 - 2. Let $p_t = P_t/a_t$; show p_{t+1}/p_t is bounded above by universal constant (use Euler equation)
 - 3. Show that if p_t sufficiently small, then $p_{t+1}/p_t < 1$ (use f(1, Gw) < G)
 - If ∃ asymptotically bubbleless equilibrium, then (by definition) *p*_t gets arbitrarily close to 0, and hence must converge to 0 by previous step
 - 5. Derive a contradiction (use $f(1, Gw) < G_d$)

イロト (母) (ヨ) (ヨ) (ヨ) (の)

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Example, linear utility

- Suppose agents have linear utility $U(y,z) = y + \beta z$
- Then $f(y,z) = 1/\beta$
- Bubble necessity condition is $1/\beta < G_d < G$
- Wilson (1981)'s example uses $G=1,~G_d=1/2$, and $\beta=3$

< ロ > < 同 > < E > < E > 三目 の

34/36

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Example, CRRA utility

Suppose agents have CRRA utility

$$U(y,z) = rac{y^{1-\gamma}}{1-\gamma} + eta rac{z^{1-\gamma}}{1-\gamma}$$

- Suppose endowments (aG^t, bG^t) , dividend D > 0
- Then $f(y,z) = \frac{1}{\beta}(z/y)^{\gamma}$
- Bubble necessity condition is

$$rac{1}{eta}(b{\it G}/a)^{\gamma} < 1 < {\it G} \iff a > eta^{-1/\gamma}{\it Gb},$$

so bubbles are inevitable whenever young (saver) are sufficiently rich

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Robustness

- Paper discusses extensions to Bewley-type infinite-horizon models with
 - idiosyncratic investment shocks (model closest to Kiyotaki (1998))
 - idiosyncratic preference shocks (model closest to Chien and Wen (2022))

Introduction	Preliminaries	Examples with only bubbly equilibria	Bubble Necessity Theorem	Examples and robustness	Conclusion
00000	000	00000	000	000	
		000	00		
			000000		

Concluding remarks

- Bubbles have generally been considered special or fragile
- Existing literature studies possibility of bubbles ("bubbles *can* arise")
- We proved the necessity of bubbles ("bubbles *must* arise") in some well-behaved economies
- It may open up new directions for research
 - Leverage and bubbles (Hirano et al., 2022)
 - Housing bubbles (Hirano and Toda, 2023a)
 - Unbalanced growth and bubbles (Hirano and Toda, 2023b)

- Acemoglu, D. (2009). Introduction to Modern Economic Growth. Princeton, NJ: Princeton University Press.
- Aiyagari, S. R. and D. Peled (1991). "Dominant Root Characterization of Pareto Optimality and the Existence of Optimal Equilibria in Stochastic Overlapping Generations Models". *Journal of Economic Theory* 54.1, 69–83. DOI: 10.1016/0022-0531(91)90105-D.
- Bewley, T. (1980). "The Optimum Quantity of Money". In: Models of Monetary Economies. Ed. by J. H. Kareken and N. Wallace. Federal Reserve Bank of Minneapolis, 169–210. URL: https://researchdatabase.minneapolisfed.org/ collections/tx31qh93v.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

Chien, Y. and Y. Wen (2022). "Optimal Ramsey Taxation in Heterogeneous Agent Economies with Quasi-Linear Preferences". Review of Economic Dynamics 46, 124–160. DOI: 10.1016/j.red.2021.08.004. Echevarria, C. (1997). "Changes in Sectoral Composition Associated with Economic Growth". International Economic *Review* 38.2. 431–452. DOI: 10.2307/2527382. Hirano, T., R. Jinnai, and A. A. Toda (2022). "Leverage, Endogenous Unbalanced Growth, and Asset Price Bubbles". arXiv: 2211.13100 [econ.TH].

Hirano, T. and A. A. Toda (2023a). "A Theory of Rational Housing Bubbles with Phase Transitions". arXiv: 2303.11365 [econ.TH].

Hirano, T. and A. A. Toda (2023b). "Unbalanced Growth, Elasticity of Substitution, and Land Overvaluation". arXiv: 2307.00349 [econ.TH]. Hirano, T. and A. A. Toda (2024). "Bubble Economics". Journal of Mathematical Economics 111, 102944. DOI: 10.1016/j.jmateco.2024.102944. Kiyotaki, N. (1998). "Credit and Business Cycles". Japanese *Economic Review* 49.1, 18–35, DOI: 10.1111/1468-5876.00069. Kocherlakota, N. R. (1992). "Bubbles and Constraints on Debt Accumulation". Journal of Economic Theory 57.1, 245–256.

DOI: 10.1016/S0022-0531(05)80052-3.

 Montrucchio, L. (2004). "Cass Transversality Condition and Sequential Asset Bubbles". *Economic Theory* 24.3, 645–663. DOI: 10.1007/s00199-004-0502-8.

Okuno, M. and I. Zilcha (1983). "Optimal Steady-State in Stationary Consumption-Loan Type Models". Journal of Economic Theory 31.2, 355–363. DOI: 10.1016/0022-0531(83)90082-0.

Samuelson, P. A. (1958). "An Exact Consumption-Loan Model of Interest with or without the Social Contrivance of Money". *Journal of Political Economy* 66.6, 467–482. DOI: 10.1086/258100.

Santos, M. S. and M. Woodford (1997). "Rational Asset Pricing Bubbles". *Econometrica* 65.1, 19–57. DOI: 10.2307/2171812.

